pre 1900 formulations
1900 to 1949 formulations
1950 to 1999 formulations
2000 to 2009 formulations
Spiral formulations
3 dimensional formulations
Data mapping periodic tables
Miscellaneous periodic tables
Books and reviews
non-chemistry periodic tables
All periodic tables

 

The INTERNET Database of Periodic Tables

There are hundreds of periodic tables in web space, but there is only one comprehensive database of periodic tables & periodic system formulations. If you know of an interesting periodic table that is missing, please contact the database curator: Dr Mark R Leach.


pre 1900 formulations 1900 to 1949 formulations 1950 to 1999 formulations 2000 to 2009 formulations Spiral formulations 3 dimensional formulations
Data mapping periodic tables Miscellaneous periodic tables Books and reviews non-chemistry periodic tables All periodic tables

Select from here:        Or search:    


The 8 Periodic Tables most recently added to the database:

2010     Epicylindrical Periodic Table
2018     Creating a Symbol of Science: The Development of a Standard Periodic Table of the Elements
1969     100 Years of the Periodic Law of Chemical Elements
2024     Cylindrical Periodic Table with Seven Vertical Columns
1976     Atomic & Ionic Radii Periodic Table
1944     Emerson's Spiral Formulation
2024     Marks' Aufspaltung Formulation
2024     Bilateral Symmetry in the Periodic Binodic Table


2010

Epicylindrical Periodic Table

An Epicylindrical Periodic Table by Steven Fowkes, who writes: "All the twist is confined to the s orbitals, 1/2 slant x 2 elements = one period lower."  

Published in the Reed College Alumni Magazine March 2010.




Top of Page


2018

Creating a Symbol of Science: The Development of a Standard Periodic Table of the Elements

Robinson, Ann E., "Creating a Symbol of Science: The Development of a Standard Periodic Table of the Elements" (2018). Doctoral Dissertations. 1385.
https://doi.org/10.7275/12706048 https://scholarworks.umass.edu/dissertations_2/1385. Download and view the PDF.

See Ann E. Robinson's ORCID page.

Mark Leach writes:

"An excellent, comprehensive study that is full of details and references."

Top of Page


1969

100 Years of the Periodic Law of Chemical Elements

A Soviet Union publication in Russian celebrating Medeleeve's seminal work of 1869: 100 Years of the Periodic Law of Chemical Elements, X Centennial (Jubilee) Mendeleev Congress. The work is the product of 23 Authors. (Thanks to Ann E. Robinson, René Vernon & Valery Tsimmerman for the info.)





Top of Page


2024

Cylindrical Periodic Table with Seven Vertical Columns

The Cylindrical Periodic Table with Seven Vertical Columns by Laith H. M. Al-ossmi, College of Engineering, University of Thi-Qar, Iraq; Thi-Qar University Pres. Read the full paper here.

Abstract: In this article, a new model of the periodic table in cylindrical form wrapped around its outer circumference is presented, departing from the traditional periodic table of elements adopted by the International Union of Pure and Applied Chemistry (IUPAC). The cylinder is designed to encompass seven periodic periods, with elements distributed throughout based on their atomic order. This design allows for six vertical columns on the surface of the cylinder to represent the distribution of elements.


Top of Page


1976

Atomic & Ionic Radii Periodic Table

A periodic table showing atomic and ionic radii from Chem Libre Texts. The text says: Figure 3.7. Source: Ionic radius data from R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica 32, no. 5 (1976): 751–767.

Mark Leach writes:

"I came across this periodic table while researching an exam question with a student: Which ion is larger: Na+ or F?

"Note that N3–, O2–, F, Ne, Na+, Mg2+ & Al3+ are all isoelectronic in that they all have the same electronic configeration: 1s2, 2s2, 2p6. The only property that changes is the nuclear charge, which increases from + 7 to + 11.

"Thus, N3– will be the largest and Al3+ the smallest in this set of isoelectronic species as the increasing nuclear charge pulls the electrons closer. Likewise from P3– to Sc3+ which are all 1s2, 2s2, 2p6, 3s2, 3p6."

Top of Page


1944

Emerson's Spiral Formulation

Emerson EI, 1944, A new spiral form of the periodic tableJChemEd., vol. 21, no. 3, pp. 111–115

René Vernon writes:

Emerson says that the elements in the A groups are called the representative elements because, as Eble states, they "include metals, nonmetals, inert elements, liquids, and gases." Eble RL, 1938, Atomic structure and the periodic table, JChemEd., vol. 15, p. 575

Note the inclusion in Emerson’s table of the neutron as element 0. Astonishingly, Emerson writes: "Element 0, possibly neutron [sic], is considered as a noble gas. Because of its probable chemical inertness and extreme density it might not be detected in a sizeable amount until some future scientist succeeds in sampling the center of the Earth." (p. 111)

(Mark Leach adds: The date is 1944 when the Manhattan Project was in full swing and nothing was being published about nuclear physics and/or neutron interactions. This idea may have come from some type of Popular Science story?)

Other features:

  • The A and B groups are diametrically opposed in their positioning. "The electron structure of H either as H+ or H finds a counterpart in the structure of element 0 or 2." (p. 113)
  • The cell spaces for Be and Mg have been stretched on account of uncertainty as to whether they belong to group 2 or group 12. "The break between the periphery of the loops of the spiral along the spaces allotted to Mg and the transition metals of the fourth period serves to indicate that Be and Mg are not to be considered as a kind of prototype of these groups." (p. 111)
  • "The C group is shown as a separate segment. If one were not concerned by plane representation the rare earths could be represented as a loop or bulge above the surface of the plane. One might imagine that this group of metals is a sort of hernia of nature that has been excised so as to maintain a flat surface." (p. 112–113)

Top of Page


2024

Marks' Aufspaltung Formulation

John Marks' Aufspaltung (or "Splitting") formulation, after Mendeleyev (1869), Ramsay (1915) & Sommerfeld (1916).

Top of Page


2024

Bilateral Symmetry in the Periodic Binodic Table

René Vernon, who developed these ideas, writes:

This table is adapted from the work of Gutiérrez-Samanez (2020), who discusses mathematising the chemical periodic system as a grid, which leads to a quadratic function or “binódica function” formed by pairs of periods or binodos (dyads).

The difference is that whereas Gutiérrez-Samanez showed the first pair of periods as H-He and Li-Be, this table shows the first period as e-n and H-He. Here, e is the electron and n is the neutron. Each pair of periods is shown pancake style rather than in a single row. The formula for the length of each paired period or binode is 2n2 = 2, 8, 16, 32.

The idea of paired periods has a long history; it seems to have originated with Werner in 1905.

According to Jensen:

"The temptation to read more into the shape of the table than is really there is almost overwhelming. Even someone as great as Werner was tempted (1905). Having postulated a missing element between H and He, he decided to perfect the symmetry of his table by guaranteeing that rows of differing length always occurred in pairs. Consequently, he further postulated a row of three missing elements lying above the H-X-He row."

Rydberg (1913, pp. 12–13) used a formula 4n^2 for the number of elements in the paired periods: 4, 16, 32, 64. This formula is also used by Gutiérrez-Samanez.

Paired periods were also used by Janet (1928), Saz (1931), Achimov (1946) and Baca Mendoza (1953).

References

  • Achimov EI 1946, Zhur. Obshchei Khim., vol. 16, p. 961; https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=776
  • Baca Mendoza O 1953, Leyes Genéticas de los elementos Químicos, Nuevo Sistema Periódico, National University of Cusco, https://www.meta-synthesis.com/webbook/35_pt/Mendoza_PT.pdf, accessed May 12, 2024
  • Gutiérrez-Samanez JA 2020, Binódic periodic system: a mathematical approach, Found Chem, vol. 22, pp. 235–266 (255)
  • Janet C1928, Essais de classification hélicoïdale des éléments chimiques. Imprimerie Départementale de l’Oise, Beauvais, https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=152
  • Jensen WB 1986, Classification, symmetry and the periodic table, Computers & Mathematics with Applications, vol. 12B, no. 12, pp. 487–510 (508)
  • Rydberg JR 1913, Untersuchungen über das system der grundstoffe, Lunds Univ. Ärsskrift, vol. 9, no. 18. In French: 1914, Recherches sur le système des éléments, Journal de Chimie Physique, vol. 12, p. 585
  • Saz E 1931, Iberica, vol. 35, p. 186
  • Wemer A 1905, Beitrag zum Aufbau des periodischen Systems, Ber. Deut. Chem. Ges, vol. 38, pp. 914–921, 2022–2027

Top of Page


pre 1900 formulations 1900 to 1949 formulations 1950 to 1999 formulations 2000 to 2009 formulations Spiral formulations 3 dimensional formulations
Data mapping periodic tables Miscellaneous periodic tables Books and reviews non-chemistry periodic tables All periodic tables